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We construct and study several semilocal density-functional approximations for the positive Kohn-Sham
kinetic energy density. These functionals fit the kinetic energy density of the Airy gas and they can be accurate
for integrated kinetic energies of atoms, molecules, jellium clusters, and jellium surfaces. We find that these
functionals are the most accurate ones for atomization kinetic energies of molecules and for fragmentation of
jellium clusters. We also report that local and semilocal kinetic energy functionals can show “binding” when
the density of a spin-unrestricted Kohn-Sham calculation is used.
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I. INTRODUCTION

The positive Kohn-Sham �KS� �Ref. 1� kinetic energy
�KE� density of noninteracting electrons,

��r� =
1

2�
i

N

���i�r��2, �1�

is an exact functional of the occupied orbitals ��i�. Density-
functional approximations to the noninteracting kinetic en-
ergy Ts�n↑ ,n↓�=	dr��r� can simplify and speed up by orders
of magnitude any KS self-consistent calculation.2 �Here
n↑�r� and n↓�r� are the spin densities.� However, in spite of
important and hard work done in this direction,3 no actual
approximation has reached chemical accuracy.

The simplest model of an edge electron gas is the Airy
gas, where any electron feels a linear effective potential,4 and
thus the normalized one-particle eigenfunctions are propor-
tional to the Airy function. The effective finite-linear-
potential model gives remarkably good results for the jellium
surface problem.5,6 However, the KE density derived in this
approximation7 does not recover the correct second-order
gradient expansion KE density8,9 and has an unphysical os-
cillating behavior in the limit of slow density variations,10

being a poor approximation for atoms.11

The positive KE density of the Airy gas was studied by
Vitos, Johansson, Kollár, and Skriver,12 and they derived a
generalized gradient approximation �GGA� density func-
tional for ��r�. �This approximation is denoted in this paper
by VJKS GGA.� They showed that the poor behavior of the
kinetic energy density derived in the linearized-potential
approximation7 is mainly due to a Laplacian term that arises
naturally in the Airy gas model. Thus, the Laplacian term,
even if it integrates to zero and does not affect the integrated
KE, is an important tool in developing density functionals
not only for the KE but also for the exchange-correlation
�xc� energy.12,13 The VJKS GGA KE density functional fits
the Airy gas KE density and is a good model for the KE
density of the jellium surfaces, but for atoms and molecules
it diverges to −� at the nuclei due to the behavior of the
Laplacian term. The integrated kinetic energies are at a
Thomas-Fermi14 level of accuracy, reducing considerably the
error of the linearized-potential approximation.7

A jellium surface is the simplest model of a metallic sur-
face. Self-consistent local-spin-density �LSD� calculations15

for this model provided early evidence that density function-
als may work. But wave function-based methods, such as
Fermi hypernetted chain16 and diffusion Monte Carlo �DMC�
of Ref. 17, predicted low-density surface xc energies about
40% larger than those from LSD. Recent refined DMC
estimates,18 and calculations in the random phase
approximation19,20 and beyond it,21–23 agree with the popular
xc semilocal density functionals, showing that the jellium
surface cannot only be accurately described in the context of
density-functional theory, but can also be an important model
used to develop new density functionals.

The exchange energy density of the Airy gas4,24,25 and the
xc jellium surface energies25,26 were employed in the con-
struction of accurate xc GGA’s for solids �see Refs. 24–26�.
A simple xc GGA functional depends only on spin densities
and their gradients and cannot describe accurately both sol-
ids and atoms.27 However, a Laplacian-level xc meta-GGA,13

which depends nontrivially on spin densities and their gradi-
ents and Laplacians, can be accurate for atoms, molecules,
solids, and surfaces.

In this paper, we derive several GGA KE functionals from
the Airy gas and jellium surfaces and we find them accurate
for atomization KE energies of molecules and for fragmen-
tation of jellium clusters. Our functionals, constructed simi-
larly to that of Ref. 12, recover the second-order gradient
expansion of the integrated KE, have the right behavior of
the KE density in the tail of the density, and fit the kinetic
energy density of the Airy gas.

The paper is organized as follows. In Sec. II, we construct
our KE functionals. In Sec. III we test the functionals for
atoms, jellium clusters, jellium surfaces, and molecules. In
Sec. IV, we summarize our conclusions.

II. LAPLACIAN-DEPENDENT GGA KINETIC ENERGY
FUNCTIONALS

The positive kinetic energy density of the local Airy gas
�LAG� is12

�LAG�z� = −
3

5
n�z�veff�z� +

1

5
�2n�z� , �2�

where veff�z� is the effective potential and n�z� is the density
of the Airy gas. �Unless otherwise stated, atomic units are
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used throughout, i.e., e2=�=me=1.� Alternatively, Eq. �2�
can be written12 using the Thomas-Fermi kinetic energy den-
sity �TF= �3 /10��3�2�2/3n5/3:

�LAG�z� = �TF�z�P�z� +
1

5
�2n�z� , �3�

where

P�z� = −
2Bz

�3�2�2/3n�z�2/3 , �4�

and B is the slope of the linear effective potential. P�z� is a
smooth function of the reduced density gradient,

s�r� = ��n�r��/�2kF�r�n�r�� , �5�

where kF�r�= �3�2n�r��1/3 is the Fermi wave vector. �The
dimensionless density gradient s�r� measures the variation of
the density over a Fermi wavelength �F=2� /kF.� Thus, Vitos
et al.12 proposed the following GGA KE density functional

�VJKS�r� = �TF�r�PVJKS�s�r�� +
1

5
�2n�r� , �6�

where

PVJKS�s� =
1 + 0.8944s2 − 0.0431s6

1 + 0.6511s2 + 0.0431s4 �7�

fits P�z� for the Airy gas model. Equation �6� recovers the
exact KE density of the von Weizsäcker functional28

��n�2 / �8n�= �5 /3��TFs2 for an exponentially decaying den-
sity �see Ref. 29�, but for a slowly varying density behaves
as �TF�1+0.2433s2+O�s4��+ 1

5�2n�z� and violates the
second-order gradient expansion �GE2� of the KE density8,9

�GE2 = �TF
1 +
5

27
s2� +

1

6
�2n . �8�

Let us consider the following arbitrary partition of Eq. �3�
for the Airy gas model:

�LAG�z� = �TF�z�F�z,�� + ��2n . �9�

Equations �3� and �9� give

F�z,�� = P�z� +
��1/5� − ���2n�z�

�TF�z�
. �10�

F�z ,�� is a smooth function of the reduced gradient s for any
�	1 /8, and it can be accurately approximated by the fol-
lowing expression:

FCR�s,�� =
1 + �a1 + 5/27�s2 + a2s4 + a3s6 − a4s8

1 + a1s2 + a5s4 + 3
40�−5a4s6

, �11�

where a1, a2, a3, a4, and a5 are parameters that depend on �.
Equation �11� recovers the terms 1+ �5 /27�s2 for a slowly
varying density, but the second-order gradient expansion of
the KE density additionally requires that �=1 /6. In the tail,
where the density decays exponentially, Eqs. �9� and �11�
give the correct KE density of the von Weizsäcker func-
tional.

When �=1 /5, F�z ,�=1 /5�= P�z� and we define a GGA
�A 1

5 � similar with the one in Ref. 12,

�A�1/5��r� = �TF�r�FCR�s�r�,� = 1/5� +
1

5
�2n�r� , �12�

where the fitting parameters are shown in Table I.
When �=1 /6, we define a GGA �A 1

6 � that recovers the
second-order gradient expansion KE density,

�A�1/6��r� = �TF�r�FCR�s�r�,� = 1/6� +
1

6
�2n�r� , �13�

where the fitting parameters are shown in Table I.
The Airy gas is the simplest edge electron gas and does

not include curvature corrections that are present at the edge
surfaces �see Fig. 2 of Ref. 4�. Thus in order to find an
optimum value of � for jellium surfaces, let us define the
quality factor �similarly to Refs. 12 and 30�,


��� =� dr��approx�r,�� − ��r��/� dr��r� , �14�

where �approx is an approximation of the positive Kohn-Sham
KE density �. �See Eq. �1��. We apply the quality factor to
jellium surfaces using numerical LSD Kohn-Sham orbitals
and densities.15,31 The integration was done from zmin
=−2.75�F to zmax=2�F, where �F=2� /kF is the bulk Fermi
wavelength, for several values of bulk parameter rs. �Here
rs= �9� /4�1/3 /kF is the radius of a sphere which contains on
average one electron, and kF is the bulk Fermi wave vector.�
For �approx we use Eqs. �9� and �11�. Thus, for values of �
between 0.15 and 0.22, we accurately fit F�z ,�� with the
Padé approximation of Eq. �11�, and we calculate 
���. Fig-
ure 1 shows that 
��� is minimum for �0.185 for semi-
infinite jellium surfaces with rs=2, 3, and 4.

So from our jellium surface analysis we define the follow-
ing GGA �A0.185� that also fits the kinetic energy density of
the Airy gas:

�A0.185�r� = �TF�r�FCR�s�r�,� = 0.185� + 0.185�2n�r� ,

�15�

where the fitting parameters are shown in Table I.
In Fig. 2 we show the exact function F�z ,�� and the fit-

ting function FCR�s ,�� versus the scaled density gradient s,
for �=1 /5, 1/6 and 0.185, respectively. Up to s=3, the exact
functions F and the parameterized ones cannot be distin-
guished. �We note that s values bigger than 3 are found in the

TABLE I. Parameters of the enhancement factor FCR�s ,�� for
various GGAs.

A 1
5 -GGA A 1

6 -GGA A0.185-GGA

a1 1.122609 1.301786 1.293576

a2 0.900085 3.715282 2.161116

a3 −0.227373 0.343244 −0.144896

a4 0.014177 0.032663 0.025505

a5 0.731298 2.393929 1.444659
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tail of an atom or molecule, where the electron density is
negligible.� PVJKS�s� overestimates P�z�=F�z ,�=1 /5� until
s3 and underestimates P�z� for 3�s�10.

Far from the edge of the Airy gas, the density has Friedel
oscillations.4 These oscillations are well described by the ki-
netic energy density of the linear potential approximation7

that in the slowly varying density regime reduces to10

�lin = �TF +
5

72

��n�2

n
+

1

12

��n�2

n
sin
2�3�2�1/3n4/3

��n� � .

�16�

The third term represents quantum oscillations and has an
unphysical behavior when �n→0. In Fig. 3 we show �
−�TF versus �, for a slowly varying Airy gas density. The
edge is at �=0. ��= �2B�1/3z is the scaled spatial coordinate
for the Airy gas.� The Friedel oscillations are well described
by Eq. �16�. But even if �A�1/6�−�TF is the worst kinetic en-
ergy density shown in the figure, its integration over a period

of the Friedel oscillations is almost exact. Thus �A�1/6�, which
behaves as �GE2 in this limit, is the best approximation for
the integrated KE, whereas �lin gives the worst integrated
KE.

III. TESTS OF OUR GGA KINETIC ENERGY
FUNCTIONALS

In this section we test our functionals for various systems.
In the calculations we use the spin-scaling relation,32

���n�,r� = �1/2����n = 2n�,r� , �17�

where n is the density of the electrons with spin . �=↑ or
↓.�

A. Integrated kinetic energies of atoms, jellium clusters, and
jellium surfaces

In Table II we show the accuracy of Ts
TF, Ts

VJKS, Ts
GE2,

Ts
GE4, Ts

A�1/5�, Ts
A�1/6�, and Ts

A0.185 for atoms, jellium clusters,
and jellium surfaces �similarly as Table I of Ref. 13�. The
error displayed in this table is

Error =
1

2
“ m.a.r.e.atoms ” +

1

4
“ m.a.r.e.clusters ”

+
1

4
“ m.a.r.e.LDM�N = 8� ” , �18�

where m.a.r.e. atoms is the mean absolute relative error
�m.a.r.e.� of the integrated kinetic energy of 50 atoms and
ions �listed in Ref. 13�, m.a.r.e. clusters is the m.a.r.e. of 2e−,
8e−, 18e−, 20e−, 34e−, 40e−, 58e−, 92e−, and 106e− neutral
spherical jellium clusters �with bulk parameter rs=3.93
which corresponds to Na�, and m.a.r.e. LDM�N=8� is the
m.a.r.e. of the KE of N=8 jellium spheres for rs=2, 4, and 6,
calculated in the liquid drop model13 �LDM�,
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FIG. 1. The quality factor 
��� versus �, for �approx given by
Eqs. �9� and �11�, for the jellium surfaces with bulk parameters rs

=2, 3, and 4. We use LSD KS orbitals and densities �Refs. 15 and
31�.
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Ts
LDM = �3/10�kF

2N + sN
2/34�rs

2, �19�

where kF is the bulk Fermi wave vector, and s is the surface
KE. The exact LDM value is computed with the exact s
�using LSD orbitals�. Because the relative errors of surface
kinetic energies are much larger than those of the atoms and
spherical jellium clusters, we use the LDM approach for cal-
culating the jellium surface KE errors �as in Ref. 13�; LDM
gives m.a.r.e. comparable to that of atoms and clusters �see
Table II�. We use analytic Hartree-Fock densities and
orbitals33 for atoms and ions, and numerical Kohn-Sham
densities and orbitals for jellium clusters �using the opti-
mized potential method �OPM� �Ref. 34�� and jellium semi-
infinite surfaces �using LSD xc potential�.

�VJKS, �A�1/5�, �A�1/6�, and �A0.185 are constructed to model
the KE density of the Airy gas, but only �A�1/6� recovers the
second-order gradient expansion of the KE density. The dif-
ference between �A�1/5� and �VJKS is given mainly by the
quality of fitting the function P�z� of Eq. �4�. �See Fig. 2.�
�A0.185 includes effects of density variations near jellium sur-
faces because of our optimization of the Laplacian coeffi-
cient. In Table II we see that Ts

A�1/6� is very accurate �compa-
rable with the fourth-order gradient expansion� for jellium
systems and gives an overall error smaller than Ts

A�1/5� and
Ts

VJKS. Ts
A0.185 is accurate for atoms and gives an overall error

comparable with the fourth-order gradient expansion one
�see also Table I of Ref. 13�.

B. Integrated atomization kinetic energy for a set of molecules

In Table III we present the atomization kinetic energies
for the molecules used in Refs. 13 and 35. We observe that
Ts

A�1/5� keeps the right sign for all the molecules and has
practically the same mean absolute error as the Thomas-
Fermi functional. In Ref. 35 it was shown that the Thomas-
Fermi KE functional gives better atomization kinetic ener-
gies than all the other tested semilocal functionals. Ts

A0.185 is
accurate for atoms and molecules, and gives the smallest
mean absolute error for the atomization energies presented in
Table III. We also show that the semilocal functional of Ref.
38, whose parameters are fitted to atoms, works worse than
the Thomas-Fermi functional and all the semilocal function-
als derived from the Airy gas.

C. Binding energy of the N2 molecule

In Fig. 4 we show the binding energy of the N2 molecule
as a function of the distance between the nuclei. We use a
spin-unrestricted Hartree-Fock calculation in which the spin

TABLE II. Mean absolute relative error �m.a.r.e.� of kinetic en-
ergies of 50 atoms and ions �see Ref. 13�, of neutral spherical jel-
lium Na clusters �2e−, 8e−, 18e−, 20e−, 34e−, 40e−, 58e−, 92e−, and
106e−� and of jellium surfaces �with rs=2, rs=4, and rs=6� incor-
porated into the liquid drop model for a jellium sphere with N=8
electrons �see Eq. �19��. Also shown is the total error given by Eq.
�18�.

m.a.r.e
atoms

m.a.r.e
clusters

m.a.r.e.
LDM�N=8� Error �Eq. �18��

Ts
TF 0.0842 0.0439 0.0810 0.0733

Ts
VJKS 0.0399 0.0465 0.0754 0.0504

Ts
GE2 0.0112 0.0099 0.0330 0.016

Ts
GE4 0.0251 0.0176 0.0170 0.0212

Ts
A�1/5� 0.0626 0.0566 0.0879 0.067

Ts
A�1/6� 0.0789 0.0154 0.0177 0.048

Ts
A0.185 0.0083 0.0249 0.0535 0.024

TABLE III. Integrated atomization kinetic energy �KE atoms—KE molecule, in a.u.� for the set of
molecules used in Refs. 13 and 35. The kinetic energies were calculated using the PROAIMV code with
Kohn-Sham orbitals given by the Gaussian 2000 code �with the uncontracted 6-311+G�3df ,2p� basis set,
Becke 1988 exchange functional �Ref. 36�, and Perdew-Wang correlation functional �Ref. 37��. The last line
shows the mean absolute errors �m.a.e.�. Here Ts

TW is the the GGA of Ref. 38 with the parameters k
=0.8438 and �=0.2319.

Ts
exact Ts

TF Ts
VJKS Ts

GE2 Ts
A�1/5� Ts

A�1/6� Ts
A0.185 Ts

TW

H2 −0.150 −0.097 −0.086 −0.114 −0.080 −0.114 −0.096 −0.108

HF −0.185 −0.305 −0.369 −0.186 −0.422 −0.173 −0.311 −0.226

H2O −0.304 −0.308 −0.455 −0.136 −0.531 −0.169 −0.369 −0.209

CH4 −0.601 −0.737 −0.907 −0.571 −0.972 −0.618 −0.813 −0.649

NH3 −0.397 −0.231 −0.457 −0.060 −0.525 −0.165 −0.364 −0.155

CO −0.298 −0.323 −0.580 −0.085 −0.678 −0.181 −0.456 −0.203

F2 −0.053 0.128 0.013 0.282 −0.050 0.269 0.093 0.223

HCN −0.340 −0.1835 −0.539 0.079 −0.644 −0.097 −0.399 −0.071

N2 −0.158 0.344 −0.046 0.565 −0.134 0.321 0.069 0.412

CN −0.431 −0.215 −0.539 0.005 −0.631 −0.168 −0.424 −0.129

NO −0.268 0.092 −0.215 0.330 −0.313 0.176 −0.094 0.198

O2 −0.100 0.106 −0.089 0.335 −0.177 0.286 0.030 0.239

m.a.e. 0.177 0.133 0.311 0.172 0.224 0.116 0.232
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symmetry breaks close to the Hartree-Fock equilibrium bond
length. This helps the functionals to show an equilibrium
length close to the exact. Figure 4 is in accord with the
values for the N2 molecule listed in Table III; all the semilo-
cal functionals presented in the figure give bigger atomiza-
tion kinetic energies than the exact calculation, thus showing
a minimum in the total energy calculated with the Hartree-
Fock density.

The unrestricted solution becomes energetically lower be-
yond the Coulson-Fisher point39 than the energy of the re-
stricted solution, and spin-symmetry breaking for the N2
molecule can be achieved by mixing the highest occupied
and lowest unoccupied orbitals.40 For a spin-restricted calcu-
lation, the orbital-free KE functionals listed in Table II do not
show an equilibrium point, thus the spin-breaking
symmetry41–43 and the spin-scaling relations32 play an impor-
tant role in describing stretched molecules, and they need to
be taken into account in the orbital-free codes.

D. Tests of the kinetic energy density

In Fig. 5 we show the kinetic energy density of our func-
tionals at a jellium surface. Though �A0.185 has the smallest
overall error, �A�1/6� gives the most accurate surface kinetic
energy because it is accurate near the surface and it can
almost exactly damp the Friedel oscillations far from the
surface �see Fig. 3�.

In Fig. 6 we show the kinetic energy densities of our
functionals for the 2e− Na jellium cluster. Here the exact
curve is the von Weizsäcker28 KE density. We see that all
three functionals ��A�1/5�, �A�1/6�, and �A0.185� recover the exact
curve in the tail of the density, as expected.

E. Large-Z asymptotic behavior

The noninteracting kinetic energy of the neutral atoms has
the following asymptotic expansion:44,45

Ts = c0Z7/3 + c1Z2 + c2Z5/3, �20�

where Z is the atomic number, and c0=0.768745, c1=−1 /2,
and c2=0.2699. In Ref. 45 the authors propose an accurate
method to extract these coefficients for any KE functional. In
Table IV we present the large-Z asymptotic behavior of our
functionals. All the functionals listed in Table IV are exact
for systems with uniform density, such that we expect that
they have the exact Thomas-Fermi coefficient c0=0.768745.
�Similarly with Ref. 45, we do not have enough data points
to extract c0 accurately.� Ts

A0.185 and Ts
VJKS, the functionals

that give the most accurate atomization kinetic energies,
have reasonable large-Z asymptotic behaviors.
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FIG. 6. Kinetic energy density versus radial distance r, for the
2e− jellium cluster �with bulk parameter rs=3.93�. The area under
the curve is the kinetic energy: Ts

exact=0.114 a.u., Ts
A�1/5�

=0.098 a.u., Ts
A�1/6�=0.121 a.u., and Ts

A0.185=0.108 a.u. VJKS
GGA, not shown in the figure, gives Ts

VJKS=0.101 a.u.
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F. Fragmentation of jellium clusters

Let us consider the disintegration of the 106e− neutral
spherical jellium Na cluster into smaller closed-shell jellium
spheres,

�106e−� → n1�92e−� + n2�58e−� + n3�40e−� + n4�34e−�

+ n5�20e−� + n6�18e−� + n7�8e−� + n8�2e−� ,

�21�

where n1 , . . . ,n8 are positive integers, and 92n1+58n2
+40n3+34n4+20n5+18n6+8n7+2n8=106. We define the
disintegration KE as

DKE = KE of initial cluster − KE of the fragments.

�22�

In Fig. 7 we show DKEexact−DKEapprox for 273 processes
described by Eq. �21�, for several KE functionals. We see
that our functional Ts

A0.185 is very accurate, improving over
Ts

TF for all the configurations. Ts
A�1/6� is close to, but better

than the fourth-order gradient expansion Ts
GE4. Overall, this

figure agrees well with the atomization KE of molecules re-
ported in Table III, showing an important link between jel-
lium spheres and molecules. These results and the liquid
drop model �see Eq. �17� of Ref. 45� suggest that the TF
functional gives a good balance between jellium surface KE
and jellium curvature KE. This balance, which is important
in atomization and disintegration processes, is improved by
the A0.185-GGA functional.

IV. CONCLUSIONS

In this paper we have studied several semilocal KE den-
sity functionals derived from the Airy gas. These functionals,
which depend trivially on the Laplacian of the density, do not

satisfy several important constraints. Their kinetic energy
densities are not always positive, and they implicitly violate
the important constraint �approx��W �here �W is the von
Weizsäcker KE density� and diverge to −� at the nucleus of
an atom.

However, such functionals can be accurate for the inte-
grated KE of jellium surfaces and jellium clusters �e.g.,
Ts

A�1/6��, and of atoms and molecules �e.g., Ts
A0.185�, when we

use realistic densities �from KS calculations�. More impor-
tantly, they are the most accurate KE density functionals, to
our knowledge, for the integrated atomization kinetic ener-
gies of molecules and for the fragmentation of jellium clus-
ters. These functionals may also be useful for quasirealistic
densities �e.g., a superposition of free-atom Kohn-Sham den-
sities�, but they are not accurate enough for orbital-free cal-
culations.

We have also presented a spin-unrestricted Hartree-Fock
calculation for the stretched N2 molecule that explains the N2
atomization kinetic energies displayed in Table III, and that
shows equilibrium lengths for many semilocal functionals.
Thus, this work suggests that the spin-symmetry breaking
and the spin scaling relations can be important tools in
orbital-free approaches.
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